Fracture assessment and management

With Dr Nick Maluga, Orthopaedic Registrar, Nepean Hospital, Sydney, Australia

Introduction
Up to 70% of all Emergency Department (ED) presentations are musculoskeletal related. All junior doctors will have significant exposure to fractures, whether in ED or on an Orthopaedic rotation. It is essential to have a basic understanding of initial assessment and the management priorities in patients with trauma and fractures.

Case 1 – You are working in the ED as junior doctor and you’re told about the next patient, a “29-year-old male, high speed trauma, obvious deformity to left leg, splint administered by paramedics.” What is your approach?

1. Initial assessment
 - Based on Early Management of Severe Trauma (EMST) principles: ABCDEFG
 - Airway maintenance with cervical spine stabilisation
 - Breathing and ventilation
 - Circulation and haemorrhage control
 - Disability
 - Glucose – DEFG ‘don’t ever forget glucose’
 - Remember to expose patient
 - Quickest way to assess the ABCs is to talk to the patient
 - If they are responsive and verbalising; then airway, breathing and circulation likely intact

2. Outline your assessment approach by the bedside
 - History - AMPLE
 - Allergy and tetanus (ADT vaccine) status
 - Medications – potential interactions, cause for presentation
 - Past medical history – underlying cause for presentation
 - Last meal/drink – fasting status important for potential surgery
 - Events leading up to presentation
 - Examination
 - Closed or open injury?
 - Neurovascular examination
 - Distal to injury
 - Target major nerve distributions
 - Pulses
 - Temperature and capillary refill
 - Ultrasound – useful to assess circulation

3. Describing X-rays
 - Identify film – right patient and location
 - Type of fracture
 - Incomplete
 - Greenstick
 - Bowing – typically paediatric populations
 - Complete
 - Transverse
 - Oblique
 - Spiral
 - Comminuted
- Location
 - Which bone (e.g. femur) and specific part (shaft, head vs. epiphysis, diaphysis)
- Displacement
 - Angulation – distal fragment comparatively to proximal fragment
 - Translation – translation along proximal fragment
 - Rotation
 - Distraction (lengthened)
 - Impaction (shortened)

4. **Rationale and application of back slabs**
 - Immobilisation/splinting is key in management, especially for analgesia (quick and easy)
 - Prevent further damage to structures surrounding fracture – reduce inflammation, fat embolism, oedema
 - Splinting should be above and below the joint
 - Partial splint (back slab) is preferred to complete splint (circumferential casting)

5. **Management and classification of open fractures**
 - Gustilo open fracture classification system
 - Scores I to IIIC
 - Increasing scores represents worse outcomes
 - Clean wound – keeps wound moist, reduce infection
 - Irrigation is controversial
 - Can be done to reduce bacterial load
 - But if wound appears clean, may not need to be done (as can cause damage)
 - Photography of wound useful as can both monitor progress and also minimise need for re-dressing and stress to patient, provided consent obtained

6. **Compartment syndrome**
 - Pain out of keeping with injury is highly suspicious for compartment syndrome
 - E.g. 10/10 pain persisting after opioid administration
 - Risk in both open and closed fractures
 - Devastating clinical damage if not picked up – surgical emergency, clinical diagnosis
 - Monitoring compartment pressures
 - More indicated when patient is intubated or in ICU and clinical examination with “5Ps” not possible
 - “5Ps”
 - Pain (to passive stretch)
 - Paralysis
 - Paraesthesia
 - Palpable swelling (wood hard swelling)
 - Pulses (absent – normally too late)
 - Management: emergency surgery for fasciotomy
 - Complication: gangrene, necrosis, rhabdomyolysis, acute kidney injury, amputation, sepsis, death

7. **Short and long-term complications of fractures**
 - Immediate: swelling, loss of function, hypovolaemic shock, pain
 - Early: neurovascular, visceral, soft tissue injuries, haemothorax, compartment syndrome, wound infection, joint injury, emboli
 - Long term: Malunion, non-union, osteomyelitis, ischaemic contractures from missed compartment syndrome, avascular necrosis (non-long bones – scaphoid and femoral head)

8. **Take home messages**
 - Systematic approach will ensure you do not miss anything
 - Know your anatomy, understand what structures can be damaged
 - Show initiative – ask for help early

Summarised by Dr Dennis Neuen, Intern, Wagga Wagga. June 2018
Useful resources

- Radiopaedia (https://radiopaedia.org/)
- Orthobullets (https://www.orthobullets.com/)
- Bone School (http://www.boneschool.com/)
- Tolerances (Orthopaedic Reference Manual)